On the quantum theory of measurements continuous in time:
information gain®
Camerino, October 2008 — Joint work with G. Lupieri

e Quantum continuous measurements = Quantum trajectories: a quantum
system is taken under observation with continuity in time (the output is

not a single random variable, but a stochastic process)

e Aim: to characterize the behaviour of the measurement, to quantify its
effectiveness in extracting information from the quantum system by means
of mutual entropies

Mutual entropy: relative entropy of a (classical, quantum, or mixed) state
on a product algebra (bipartite system) with respect to the product of its

marginals

e Key concept: any quantum measurement is a “quantum channel”, a CP map
from the quantum states (density operators) to classical/quantum states

(probabilities for the output & post-measurement density operator)
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The linear SDE of continual measurement theory.

For simplicity: bounded operators, finite sums. ..

H: Hilbert space of the system T (H): trace class
S(H) = {statistical operators} C 7 (H) Initial condition: o9 = 0 € S(H)
doy = L(t)[o,]dt + Z o, + oy R; (1)) dW; (t)

+ Ek: (‘7’“ (2[0’5] - 0t> (AN () — Apdt)

Wi,7=1,..., N,k = 1,...: independent Wiener and Poisson processes in a
probability space (Q, F2 , Q). Eq[Ng(t)] = Axt: intensity Ay > 0

The space of events from s to t: the o-algebra generated by the increments

Fi = oc{W;(u) — W,(s), Np(v) — Ng(s), u,v € [s,t], j,k=1,...}
L(t): Liouville operator Jr(t): jump operator
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H(t), Li(t), R;(t), V. (t) are bounded operators with H(t) = H(t)* and with a
reqular dependence on time (norm-continuity from the left with limits from the

right)

Physical probabilities and a posteriori states

co=0€SH) = ow)>0, [,Tr{o(w)}Q(dw) =1

pi := Tr{o;} is amartingale; P;(dw) = p;(w)Q(dw)| o 15 a family of consistent
probabilities (the physical probabilities), i.e. F' € Fp, t <T = Pr[F] = P;[F).
a posteriori states: p; := pit o a priori states: n; := Eqglo] = Ep, [p¢]

p¢ satisfies a non-linear SDE (the stochastic master equation) pg = ng = 09 = 0



In quantum information o; = { P, p;} is called an ensemble (of quantum states)
with average state n;

Sq(pel|ne) = Tr{p¢(In py —Inn)}: a quantum relative entropy

oy is a normal state on the von Neumann algebra L™ (Q,F?,Q;B(H)) ~
L> (Q,7?,Q) ® B(H) (a bipartite classical/quantum system)

The relative entropy of the ensemble o; with respect to the product of its mar-

ginals p; and n;:

S(oellpene) = /Q@(dw) Tr{oi(w)(Inot(w) = Inpy(w)ne) ; = Ee, [Sq(pe]|n:)]

it is a mutual entropy of mixed classical/quantum type — Holevo’s x-quantity
of the ensemble o; — It is a measure of the effectiveness of the continual meas-

urement in encoding information in the a posteriori states



Instruments and channels. General result: any instrument is equivalent to a

channel from quantum states to classical /quantum states.

The propagator A of the linear SDE: o+— o; = Ao
t
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A T(H) — L (Q, FF,Q;7(H)) is CP and normalized: it is a channel
For 0 <r <s <, Ao AL = A7, Ailos]| = oy

For F € Ff define I; (F):  Vpe S(H), Z;(F)[p| =Eq |1r Af[p]]
77 (e) is an instrument, a normalized CP-map valued measure

77 (e)*[1] is a POV measure (a general observable in quantum mechanics)



Physical probabilities, output of the measurement; Girsanov theorem

Structure of the probability density p; = Tr{o}:

IRy

+Z[/Ot1 ik de(S)_I_/()t()\k_Mk(S))dS]}

A posteriori means :  m;(t) = Tr{(R,;(t) + R;(1)") p+} px(t) = Tr{Jx(t)p:}

Output of the measurement: the processes W;(t), Ni(t) under the physical
probability

Under the physical probability Pr(dw) = pr(w)Q(dw)| 0
Wj (1) = W;(t) — fg m;(s)ds (0 < ¢t < T) are independent, standard Wiener
processes and Ni(t) is a counting process of stochastic intensity pg(¢)dt.

n;(t) := Ep, [m; ()] = Tr {(R;(t) + R;(1)") 1t}

vi(t) := Ep, [pn(t)] = Tr {J(t)n: }

the processes

A priori means:



Aim: to introduce a reference measure with density ¢; such that S.(p:||q;) =
Ep, [In(p;/q; )] be a measure of the effectiveness of the continual measurement in
extracting information on the underlying quantum system. Candidate:

= eXP{Z[/Ot n;(s) dWj(s) — %/Ot nj(s)2ds]
+ZU; In V];\(:) de(s)+/0t (Ak _Vk(S))dS]}

k

Under g7 (w)Q(dw), the processes W;, Ni have independent increments as under
Q (so, they can be interpreted as noises), but the means have been changed
and made equal to the means they have under Pp. Precisely, the processes
W;(t) — fg’ n;(s)ds are independent, standard Wiener processes and Ni() is a
Poisson process of time dependent intensity v (t).

In some sense ¢;(w)Q(dw) is a continuous product of marginals of P;(dw) =
p+(w)Q(dw) and the classical relative entropy Sc(p:||¢:) can be considered as a

mutual entropy.



Explicit computations of S.(p:||q:) = Ep, [In(p:/q:)]:

S.(psllgs) = Z/ Varp, [m;(s ds+2/ Kp, [,Uk ) In ((z))]ds

A bound on the rate of information which can be extracted

% (Sctoular) + Be,[Suouln) < 5 Be.[Sa(otlme)

r=t+t

Sc(pel|ge): classical information on the measured quantum system

Ep, [Sq (pt||ne)] = S(o¢|lpene): information contained in the a posteriori states
pl = (Tr{ct}) ™" o is the a posteriori state of a continual measurement starting
at time ¢ from the state 7;. ol = ALn]. The r.h.s. of the bound is a
measure of the ability of the continual measurement of starting a demixture of
the a priori states 7.

The classical quantity 5= Sc(p:|lg:) is bounded by the quantum quantity
& Ep.[Sa(plln)]| = G Ep,[Sq(pellne)]



Gain of information on the initial state: the input/output classical information

Possible initial states: pij(a) € S(H), o € A, with probability distribution
P;(de); equivalently, (pi(«), Pi(de)) is the initial ensemble
average initial state: 7, = [, P 4 Pi(da)pi (o)

Py(dwla) = pr(wla)Q(dw)  pe(wla) = Tr {A(w)]pi(e)]}
Pi(de) = pr()Qd)  pu(w) = [ prlwla)Pi(da) = Tr {Aw)n])
P;(da x dw) = Pi(dw|a)Pi(da) = ps(w|a)P;(da)Q(dw)

P; (dw|a)P;(da) _ pe(w|a)

Py (dw) pr(w)

I(t) = /AXQPt(dO‘ X dw) In Iélj:t(iid(j;ﬁ((i;j)) = /APi(da)/QIP’t(dw\a) In p;it“j)

Pi(da)

P;(dajw) =
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A (@)[pi(a)]

pi (W) = a posteriori state starting from p;(«)
t Tr {A? (w)[pi ()]}
A (w) ] . .
pr(w) = a posteriori state starting from n;
Tr {A7 (w)[mi]}

mg (t,w) = Tr{(R;(t) + R;(t)*) py (w)} m;(t,w) = Tr{(R;(t) + R;(t)") pt(w)}
py (8, w) = Tr {Jk(t)pf' (w) } pr(t, w) = Tr{Jp(t)ps(w)}

I(t):/AXQPt(daxdw/ {%Z ) (5,0))°

J
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The bound (Holevo, Yuen-Ozawa, Schumacher-Westmoreland-Wootters, Jac-
obs, Barchielli-Lupieri):
0 < I(t) < x(0) = x(¢)

x(t) = /Q P, (dw) /A Py(daew) Sq (65 (@) ()

[ 4 Pe(da|w) Sq(pf (w)]|pe(w)) is a random chi-quantity; then, x(¢) is a mean chi-
quantity

= x(0) = /APi(dOé) Sq (pi()||m) (Holevo’s chi-quantity of the initial ensemble)

Proof of all the bounds: Instruments = channels & Uhlmann monotonicity

theorem (channels decrease the relative entropies)
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